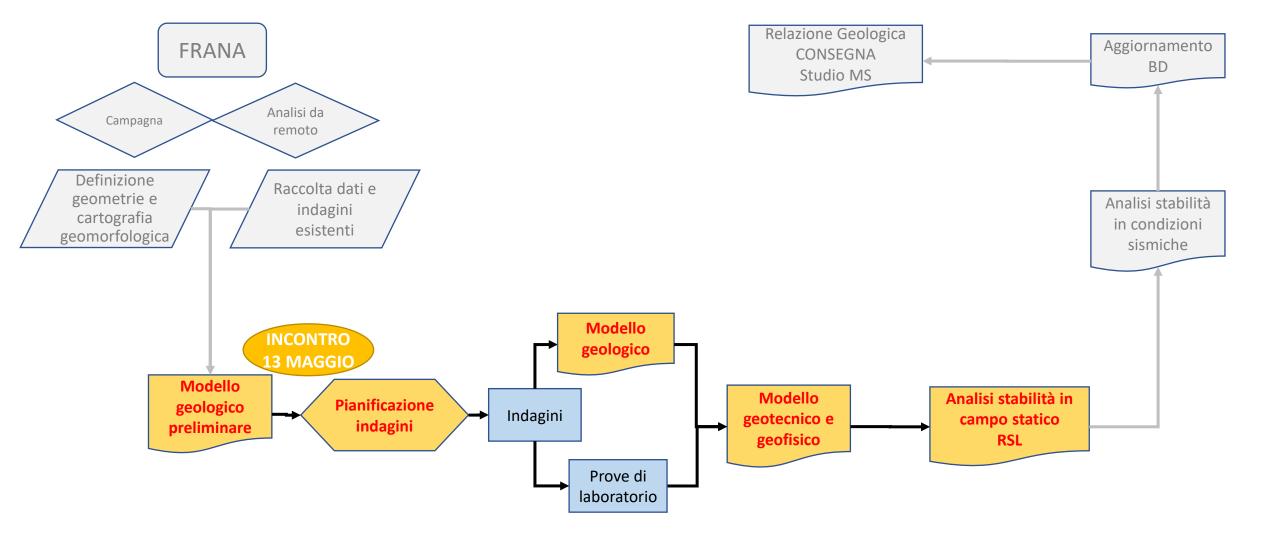

Studi di approfondimento di Livello 3 sulle aree di attenzione per instabilità di versante

Modello geotecnico e analisi di stabilità in campo statico

<u>Leonardo Disperati</u> & Pier Lorenzo Fantozzi

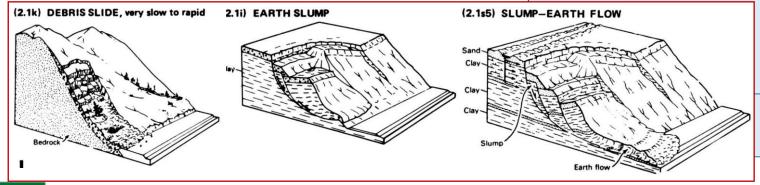

Università di Siena – Dipartimento di Scienze Fisiche, della Terra e dell'Ambiente

Obiettivi

Obiettivi

- Vengono considerati i movimenti franosi «in terra»
- Possibili denominazioni dei materiali coinvolti (Hungr et al., 2013)

Material name	Character descriptors (if important)	Simplified field description for the purposes of classification	Corresponding unified soil classes	Laboratory indices (if available)
Rock	Strong	Strong—broken with a hammer		UCS>25 MPa
	Weak	Weak—peeled with a knife		2 <ucs<25 mpa<="" td=""></ucs<25>
Clay	Stiff	Plastic, can be molded into standard thread when moist, has dry strength	GC, SC, CL, MH, CH, OL, and OH	I _p > 0.05
	Soft			
	Sensitive			
Mud	Liquid	Plastic, unsorted remolded, and close to Liquid Limit	CL, CH, and CM	$I_{ m p}{>}0.05$ and $I_{ m l}{>}0.5$
Silt, sand, gravel, and boulders	Dry	Nonplastic (or very low plasticity), granular, sorted. — Silt particles cannot be seen by eye —	ML	I _p <0.05
	Saturated		SW, SP, and SM	
	Partly saturated		GW, GP, and GM	
Debris	Dry	Low plasticity, unsorted and mixed	SW-GW	I _p <0.05
	Saturated		SM-GM	
	Partly saturated		CL, CH, and CM	
Peat		Organic	Hungr et al. (2013)	
lce		Glacier		



- Classificazione per tipologia → vengono considerati gli scorrimenti (slide; Hungr et al., 2013)
 - planari
 - rotazionali
 - composti (compound)

Type of movement	Rock	Soil
Fall	1. <i>Rock/ice</i> fall ^a	2. Boulder/debris/silt fall ^a
Topple	3. Rock block topple ^a	5. <i>Gravel/sand/silt</i> topple ^a
	4. Rock flexural topple	
Slide	6. Rock rotational slide	11. Clay/silt rotational slide
	7. Rock planar slide ^a	12. Clay/silt planar slide
	8. Rock wedge slide ^a	13. <i>Gravel/sand/debris</i> slide ^a
	9. Rock compound slide	14. Clay/silt compound slide
	10. Rock irregular slide ^a	
Spread	15. Rock slope spread	16. Sand/silt liquefaction spreada
		17. Sensitive clay spread ^a
Flow	18. <i>Rock/ice</i> avalanche ^a	19. <i>Sand/silt/debris</i> dry flow
		20. Sand/silt/debris flowslide ^a
		21. Sensitive clay flowslide ^a
		22. Debris flow ^a
		23. Mud flow ^a
IP-EARTH FLOW		24. Debris flood

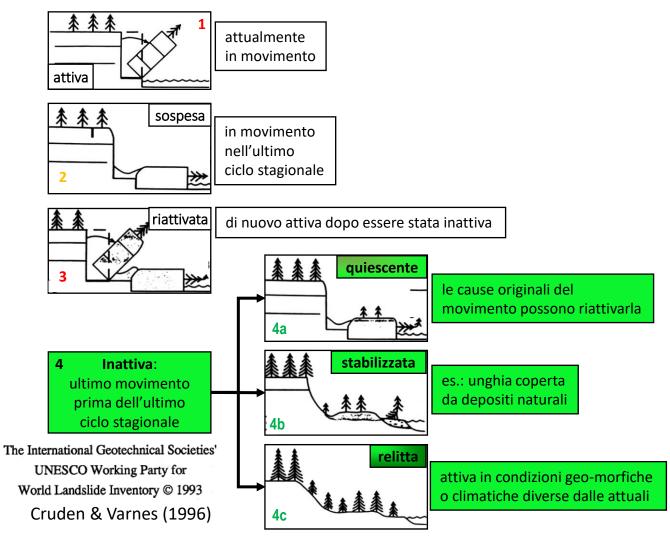
28. Mountain slope deformation

29. Rock slope deformation

25. Debris avalanche^a

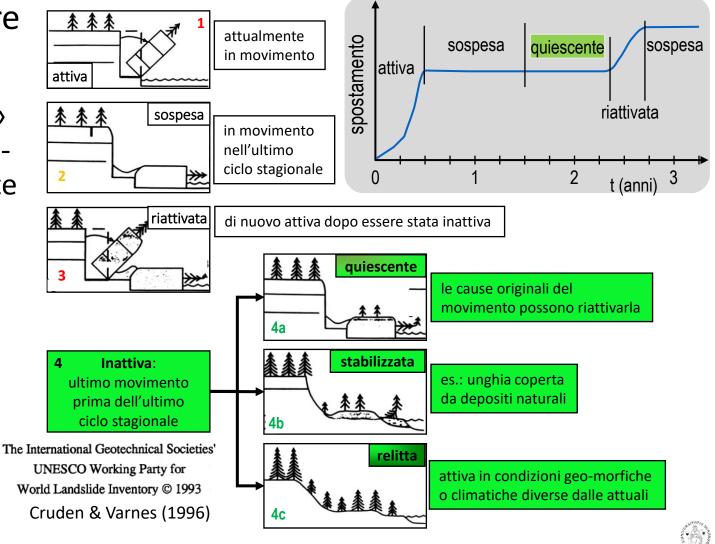
30. Soil slope deformation

26. Earthflow 27. Peat flow

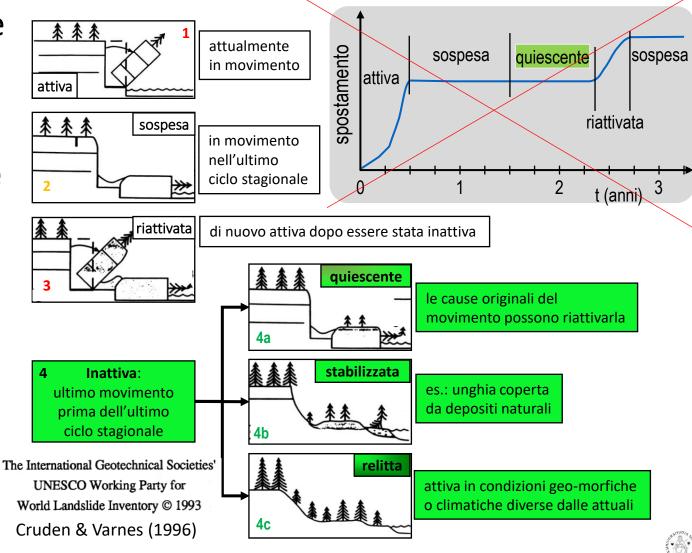

31. Soil creep

32. Solifluction

Hungr et al. (2013)

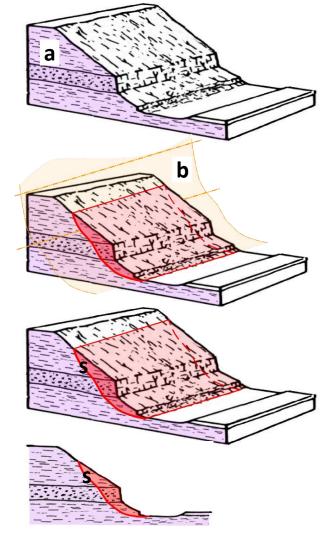

 Classificazione per stato di attività → vengono considerate le frane «inattive» che includono i fenomeni:

- quiescenti
- stabilizzati
- relitti



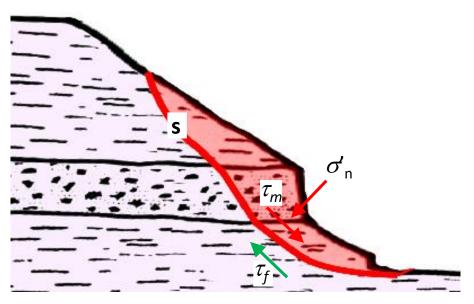
- Lo stato di attività può essere
 - «definito quantitativamente» se si dispone di curve tempo spostamento ottenute tramite misure multitemporali o monitoraggio
 - in sito di superficie e/o sottosuolo
 - da remote sensing

- Lo stato di attività può essere
 - «definito quantitativamente» se si dispone di curve tempo spostamento ottenute tramite misure multitemporali o monitoraggio
 - in sito di superficie e/o sottosuolo
 - da remote sensing
 - «attribuito» su base esperta tramite approcci e metodi geomorfologici

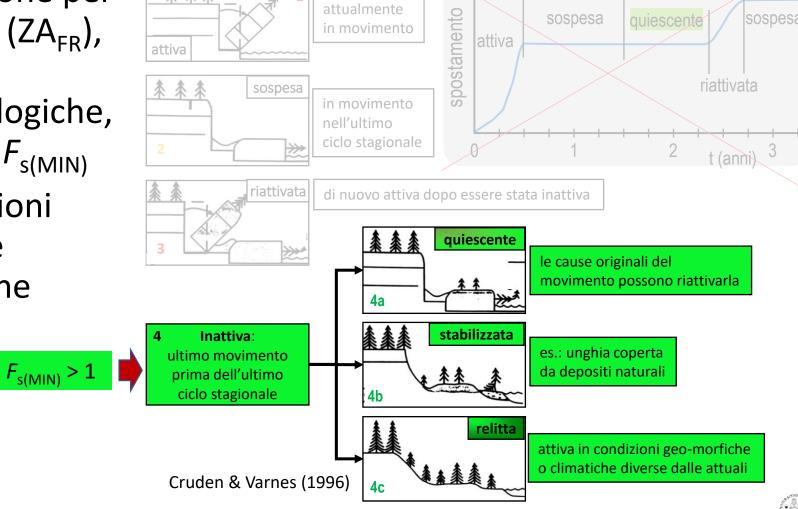

- Lo stato di attività indica come possono cambiare nel tempo le condizioni di equilibrio del pendio per effetto di variazioni di fattori della stabilità, es.:
 - variazioni pressioni neutre
 - input sismico
 - ...
- Lo stato di attività può quindi essere indagato / dedotto
 - nelle condizioni attuali
 - per possibili scenari futuri dei fattori di stabilità

tramite modellazione quantitativa delle condizioni di equilibrio in condizioni statiche secondo diversi metodi, tra i quali:

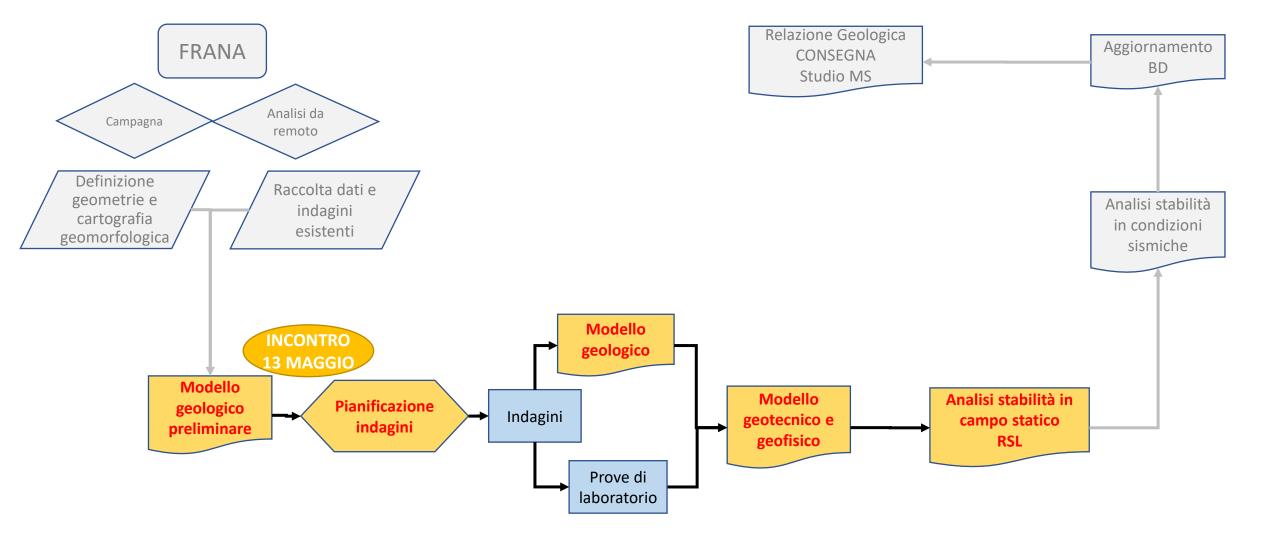
metodi dell'equilibrio limite


- Metodi dell'equilibrio limite
 - Assunzione di
 - sezione (a) rappresentativa del pendio
 - superficie cilindrica di potenziale scorrimento (b) prodotta da generatrice normale alla sezione
 - Si individua sulla sezione l'intersezione (s) (che separa la massa potenzialmente instabile per frana da quella stabile) sulla quale vengono valutate le condizioni di equilibrio
 - Approccio 2D
 - Condizioni di deformazione piana
 - Non si considerano gli effetti tridimensionali del problema

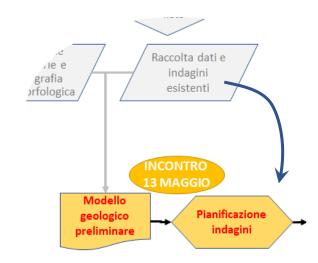
- Metodi dell'equilibrio limite
 - Comportamento del terreno rigido perfettamente plastico
 - Si trascura la deformazione pre-rottura
 - Resistenza mobilitata a rottura indipendente dalla deformazione


- Rottura contemporanea in tutti i punti della superficie s
- In corrispondenza di s vengono stimati:
 - Resistenza al taglio disponibile au_f
 - tensioni efficaci: $\tau_f = c' + \sigma'_n$ * tan ϕ' (criterio di Mohr-Coulomb)
 - tensioni totali: $\tau_f = c_u$ (criterio di Tresca)
 - Sforzo di taglio au_n
 - Coefficiente di sicurezza: $F_s = \sum \tau_f / \sum \tau_m$
- Superficie critica: superficie con coefficiente di sicurezza minimo ($F_s = F_{s(MIN)}$)
 - condizioni stabili: $F_{s(MIN)} > 1$
 - condizioni di equilibrio limite o di collasso: $F_{s(MIN)} = 1$

11/04/2022


- Per le Zone di Attenzione per instabilità di versante (ZA_{FR}) , successivamente alle valutazioni geomorfologiche, viene quindi valutato $F_{s(MIN)}$
- In generale, in condizioni statiche, dovrà essere verificata, la condizione

$$F_{s(MIN)} > 1$$


Obiettivi

Pianificazione indagini

- Analisi dati geologico-tecnici e di sottosuolo esistenti acquisiti per la modellazione geologica preliminare
 - Significatività
 - tipologia
 - modalità acquisizione
 - dati idrogeologici: epoca acquisizione
 - coerenza con il modello geologico preliminare

Pianificazione indagini

- Per le indagini geologico-tecniche, il «Disciplinare di incarico professionale» prevede prove penetrometriche e sondaggi
- Si considerano quindi due situazioni di riferimento
 - A. Dati geologico-tecnici assenti o incoerenti/insufficienti
 - 1. Esecuzione prove penetrometriche
 - Definizione unità geotecniche preliminari
 - Orizzonti a bassa resistenza/consistenza → possibili superfici di scorrimento → scelta profondità campionamento
 - Integrazione con il modello geologico preliminare e programmazione sondaggi
 - 2. Esecuzione sondaggi
 - Campionamento a profondità «guidate» dalla FASE 1
 - Verifica interpretazioni penetrometriche
 - B. Dati geologico-tecnici coerenti con il modello preliminare
 - Programma integrato di prove penetrometriche e sondaggi

Mongeologico

Indagini

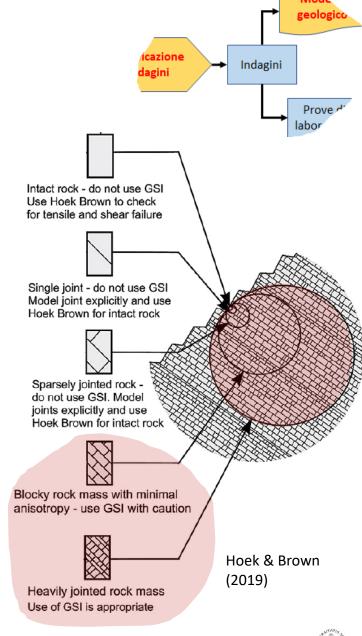
Prove rilabor

- Vincoli dal «Disciplinare di incarico professionale»
- Riferimenti metodologici in: «Protocolli di acquisizione ed elaborazione dati relativi alle attività di Microzonazione Sismica di livello 3 in Italia Centrale» a cura del Centro per la Microzonazione Sismica

- Moa geologico

 Indagini

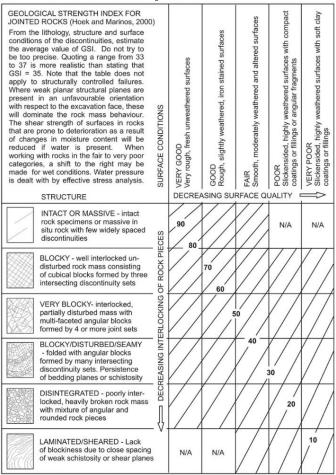
 Prove A
- Tipologie, quantità, localizzazione, delle indagini dipendono dalle situazioni delle singole aree di studio e saranno concordate con la Commissione
- In generale sono previsti:
 - Prove penetrometriche tra le quali CPT, CPTu, SPT e DPSH, in funzione della litostratigrafia
 - rifiuto o profondità max. 30 m
 - geometria e caratterizzazione 3D di sottosuolo dell'area di studio
 - individuazione eventuale superficie di scorrimento, caratterizzazione geotecnica
 - Sondaggi geognostici a carotaggio continuo
 - profondità max. 30 m o raggiungimento substrato geologico «integro»
 - installazione piezometro a tubo aperto (ove non disponibili altre opzioni di misura)
 - Prelievo campioni indisturbati (se possibile) e rimaneggiati per l'esecuzione delle prove di laboratorio
- Compatibilmente con le tempistiche degli studi, saranno verificati periodicamente i valori di soggiacenza di piezometri e (eventuali) pozzi

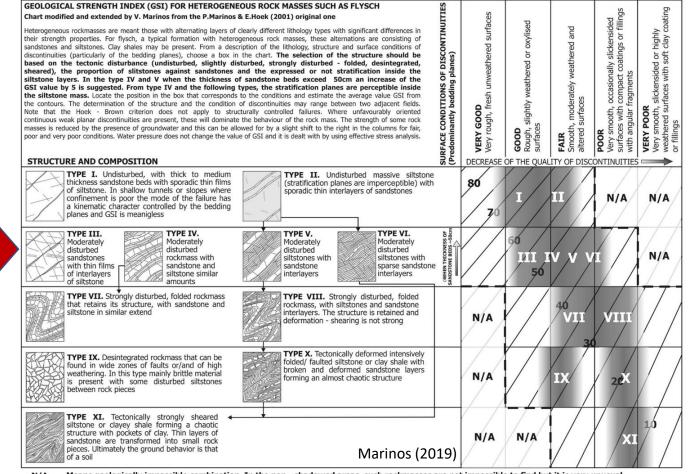


- Nel caso in cui dal rilevamento e/o dalle indagini geognostiche siano individuate unità litologiche costituite da rocce – rocce deboli, si può procedere come segue:
 - Se gli elementi strutturali dell'ammasso roccioso (> discontinuo) hanno un controllo «limitato» sulla superficie di rottura
 - Si assimila il discontinuo ad un «continuo equivalente»
 - Si valutano i parametri di resistenza al taglio equivalenti di Mohr-Coulomb integrando:
 - Criterio di rottura di Hoek & Brown (1997) generalizzato

$$\sigma_1 = \sigma_3 + \sigma_c \left(m_b \frac{\sigma_3}{\sigma_c} + s_i \right)^a$$

Geological Strenght Index (GSI)


 σ_c : resistenza a compressione uniassiale della roccia m_b , s_i , a: parametri stimati tramite l'indice di ammasso GSI



Abachi per la stima di GSI

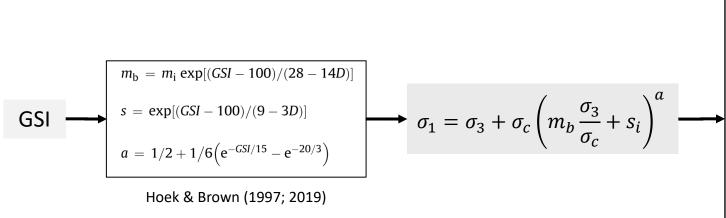
Specifico per ammassi rocciosi eterogenei

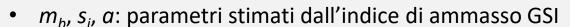
geologico

Prove 4

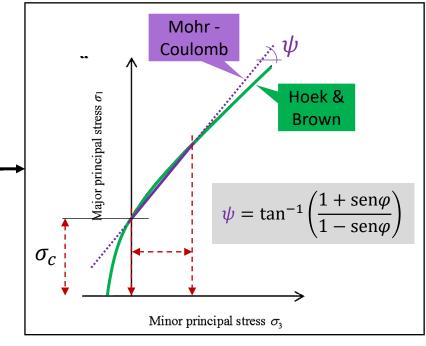
labor

Indagini

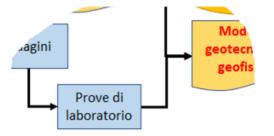

icazione


A Means geologically impossible combination. In the non - shadowed areas, such rockmasses are not impossible to find but it is very unusual

Means deformation after tectonic disturbance


Mongeologico
Indagini
Prove A

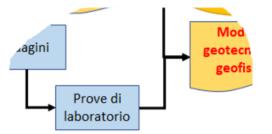
 Procedura schematica di stima dei parametri di resistenza al taglio equivalenti di Mohr - Coulomb



- D (disturbance factor 0 ÷ 1): dipende dal grado di disturbo nel caso di «fronti» artificiali
- σ_c : resistenza a compressione uniassiale della roccia

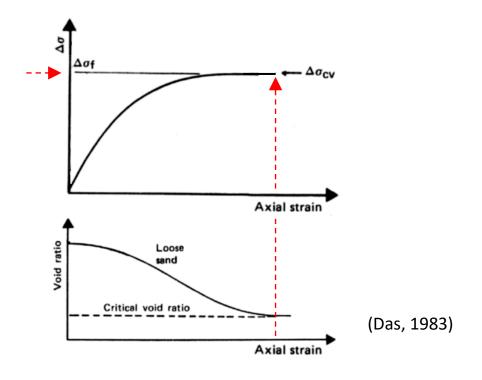
Prove di laboratorio

Prove fisiche


- Parametri indice
 - Composizione granulometrica completa
 - Limiti di plasticità
 - Altri parametri indice
- Parametri di stato
 - Peso di volume
 - *W*_n, *e*, ...

Prove meccaniche

- Il modello geologico preliminare può consentire di ipotizzare la profondità della superficie di scorrimento → scelta intervalli delle tensioni normali / di confinamento
- Prove di taglio diretto con misura dei parametri residui
 - (prova di taglio anulare)
- Prove triassiali CIU con misura delle pressioni neutre
- (Prove di compressione ad espansione laterale libera)

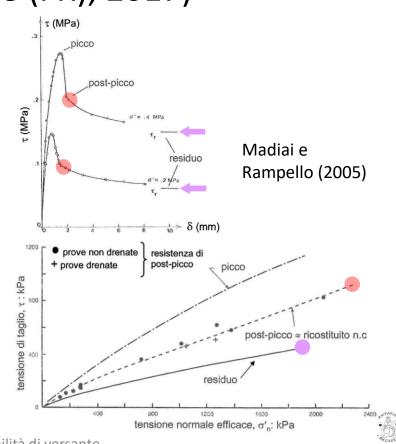

Prove di laboratorio

- Scelta delle caratteristiche di resistenza al taglio in termini di tensioni efficaci (AGI, 2005; Linee guida per la gestione del territorio in aree interessate da instabilità di versante sismoindotte (FR), 2017)
 - Terreni a comportamento duttile, caratteristiche di resistenza condizioni a volume costante

$$c' \approx 0$$

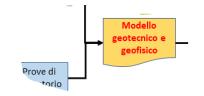
$$\phi' = \phi'_{cv}$$

Prove di laboratorio

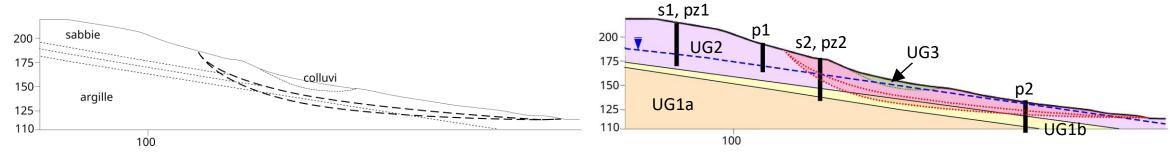

• Scelta delle caratteristiche di resistenza al taglio in termini di tensioni efficaci (AGI, 2005; Linee guida per la gestione del territorio in aree interessate da instabilità di versante sismoindotte (FR), 2017)

- Terreni a comportamento fragile
 - terreni granulari e coesivi sovraconsolidati con discontinuità preesistenti, caratteristiche di resistenza in condizioni a volume costante post-picco

$$c' \approx 0$$
 $\phi' = \phi'_{pp}$


 per elevati valori di scorrimento, caratteristiche di resistenza residue

$$c' = 0$$
 $\phi' = \phi'_r$



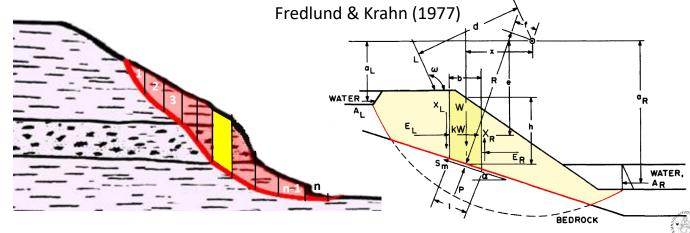
Modello geotecnico

- Revisione e integrazione dei nuovi dati nel modello geologico preliminare
 - litologico-stratigrafici
 - geotecnici
 - geofisici
- Definizione e rappresentazione di:
 - Unità geotecniche (UG) e relativi set di parametri (γ , c', ϕ' , ...)
 - «Intervallo» della superficie piezometrica
 - (eventuale) superficie di scorrimento
 - Posizione indagini geognostiche (s, p, pz, ...)

11/04/2022

modello geologico preliminare

Analisi di stabilità in campo statico

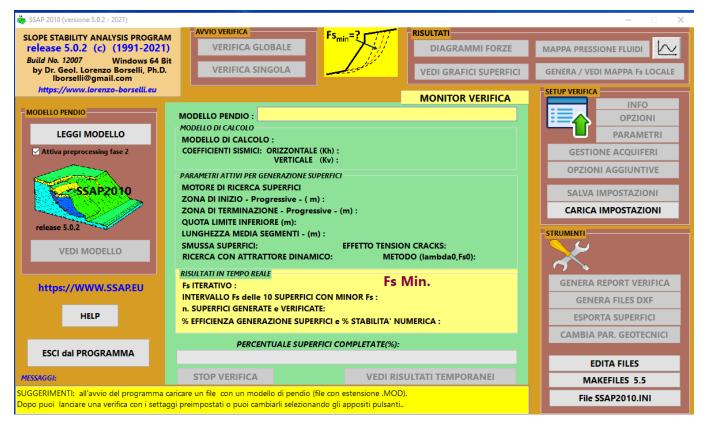


- Ricerca della superficie critica ($F_s = F_{s(MIN)}$)
- Impiego di *sw* che implementano diversi metodi all'equilibrio limite «per elementi» che possono essere applicati a
 - pendii non omogenei
 - superfici di scorrimento con geometria «irregolare»

• I diversi metodi assumono diverse ipotesi «semplificative» per ridurre il numero di incognite rispetto al numero di equazioni di equilibrio

disponibili, es.:

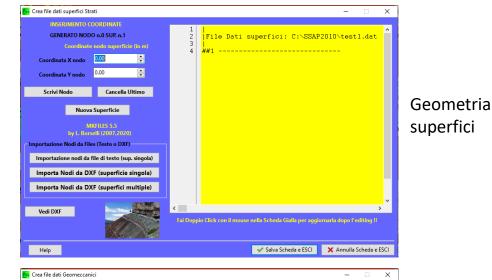
- Bishop (1955)
- Morgenstern & Price (1965)
- Spencer (1967)
- Janbu (1973)



Analisi di stabilità in campo statico

- Tra i *sw freeware* si suggerisce SSAP2010 (SLOPE STABILITY ANALYSIS PROGRAM www.ssap.eu)
 - Integra una versione base di QCAD per la delineazione del modello geotecnico





Analisi di stabilità in campo statico

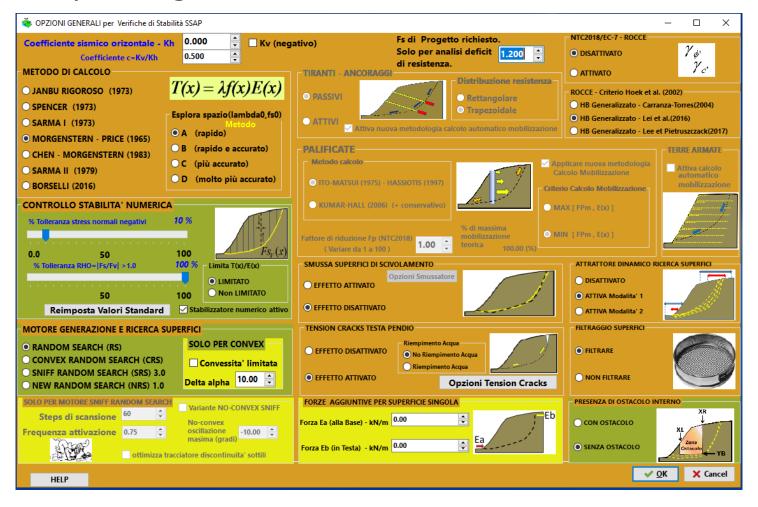
• SSAP2010 - Input geometria e parametri del modello

5.00 0.00 18.01 18.01 0.00 0.00 21.01 21.01 40.00 45 19 0.00

✓ Salva Scheda e ESCI

X Annulla Scheda e ESCI

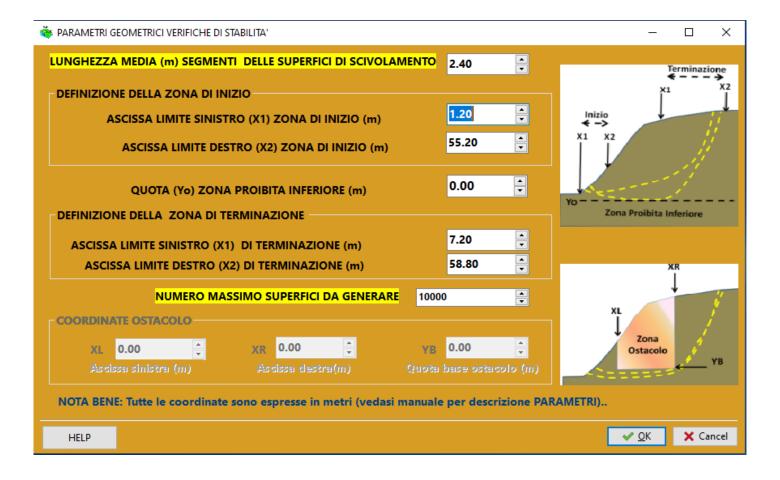
Parametri geotecnici e geomeccanici



MKFILES 5.5

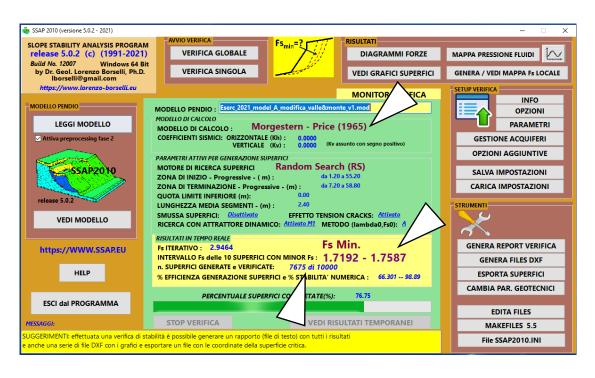
Analisi di stabilità in campo statico

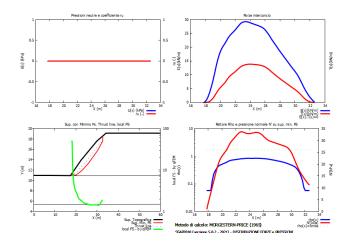
SSAP2010 – Opzioni generali di calcolo

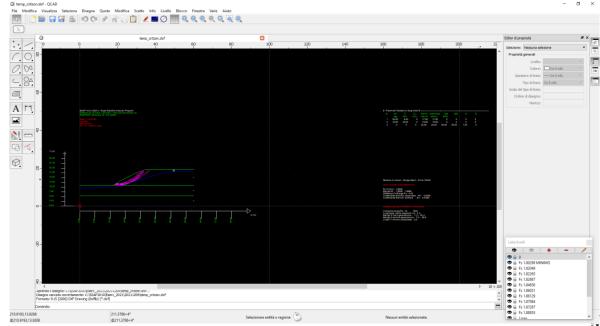


Analisi di stabilità in campo statico

• SSAP2010 – Vincoli geometrici superfici di scorrimento

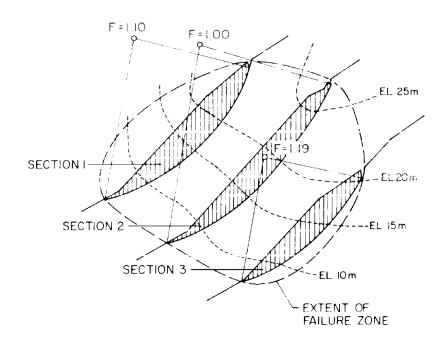






Analisi di stabilità in campo statico

• SSAP2010 – Output



Analisi di stabilità in campo statico

- Calcolo $F_{s(MIN)}$ per diverse sezioni rappresentative del modello geotecnico
- Analisi degli effetti su F_{s(MIN)} e sulla posizione/geometria della superficie critica di:
 - Diverse configurazioni della superfice piezometrica
 - Diverse combinazioni dei parametri fisicomeccanici di input
 - Verifica rispetto alla valutazione di stato di attività basata su criteri geomorfologici

Sevaldson (1956)

Grazie per l'attenzione!!!

